
Redbooks Paper

Linux on IBM zSeries and S/390:

TCP/IP Broadcast on z/VM Guest LAN

Preface
This Redpaper provides information to help readers plan for and exploit Internet Protocol (IP)
broadcast support that was made available to z/VM Guest LAN environments with the
introduction of the z/VM 4.3 Operating System.

Using IP broadcast support, Linux guests can for the first time use DHCP to lease an IP
address dynamically from a DHCP server in a z/VM Guest LAN environment. This frees the
administrator from the previous method of having to hardcode an IP address for every Linux
guest in the system. This new feature enables easier deployment and administration of
large-scale Linux environments.

Objectives
The objectives of this paper are to:

� Review the z/VM Guest LAN environment

� Explain IP broadcast

� Introduce the Dynamic Host Configuration Protocol (DHCP)

� Explain how DHCP works in a z/VM Guest LAN

� Describe how to implement DHCP in a z/VM Guest LAN environment

Simon Williams
© Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1

z/VM Guest LAN

Introduction
Prior to z/VM 4.2, virtual connectivity options for connecting one or more virtual machines
(VM guests) was limited to virtual channel-to-channel adapters (CTCA) and the Inter-User
Communications Vehicle (IUCV) facility. These virtual interfaces are classified as
point-to-point connections; see Figure 1 for a diagram. While the bandwidth of point-to-point
connections is considerable and thus affords the rapid movement of large amounts of data
between guests, these interfaces have a number of drawbacks.

Using CTCA links as an example, in order for two guests to communicate with each other, you
must define CTCA device pairs in each guest and couple those devices between the guest
machines. Another requirement when using point-to-point connections is the definition of
static routing statements in each guest that needs to communicate with any other guest in the
system. Finally, another limitation is that if one side of the point-to-point connection goes
down, it is often difficult to subsequently reconnect the two guests. Frequently, one of the
Linux guest machines has to be rebooted in order to reestablish the connection.

Figure 1 VM point-to-point connections

From z/VM 4.2 onwards, the z/VM Control Program (CP) has been enhanced to provide a
feature known as Guest LAN. This feature allows you to create multiple virtual LAN segments
within a z/VM environment; see Figure 2 on page 3 for an example.

Attention: While broadcast support for z/VM Guest LANs was announced with the base
z/VM 4.3 operating system, the user must apply the PTF for APAR VM63172. This APAR
resolves several issues which have been found to inhibit the use of DHCP by Linux-based
applications running over the z/VM Guest LAN (in simulated QDIO mode).

Linux1

Virtual
CTCs

TCPIP2

VM/ESA or z/VM CP

Linux2

Virtual
CTC

Linux3

Virtual
CTC

TCPIP1

Virtual
CTC

Linux4

IUCV

Linux5

IUCVIUCV
2 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Figure 2 z/VM Guest LAN

There is no architectural limit on the number of Guest LAN segments that you can create.
However, you will be limited by the amount of machine resources you have available.

In contrast to point-to-point connections, to connect to a Guest LAN, individual guest
machines create a virtual Network Interface Card (NIC). They can then connect this NIC to
the LAN and communicate with other guests using standard TCP/IP protocols.

As z/VM Guest LAN is a virtualization technology, it is not limited to the use of zSeries
hardware (that is, the z800 or z900 processors). Guest LAN is supported on all IBM
mainframe hardware from IBM 9672 Generation 5 processors onward (including the
Multiprise 3000).

When Guest LAN was first released with z/VM 4.2, the virtual NIC simulated a HiperSockets
device, as introduced by the zSeries z900 GA-2 mainframe in late 2001. Being a simulated
HiperSockets device meant that the NIC did not have IP broadcast capability.

As of z/VM 4.3 (on which this Redpaper is based), the Guest LAN can be defined to use
either simulated HiperSockets devices or simulated QDIO devices. The QDIO device that is

Note: While the structures and simulated devices related to the Guest LAN under z/VM are
“virtual”, we use the term Guest LAN and not Virtual LAN, because the term Virtual LAN
(VLAN) has a different meaning in the networking world.

Note: A z/VM Guest LAN is solely contained within a single z/VM operating system
environment and thus guests cannot communicate (using their Guest LAN interface) with
systems outside of the Guest LAN. Of course, if a Linux guest also has a virtual CTC
interface, an IUCV connection, a “real” HiperSocket link, or is the owner of a hardware
interface (such as an OSA device), then they can communicate with other systems,
providing the necessary addressing and routing is correct.

Linux1 TCPIP2

z/VM 4.2 or z/VM 4.3 CP

Linux2 Linux3

Virtual
Network
Interface

TCPIP1 Linux4 Linux5

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

LANx LANy
Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 3

simulated is the OSA Express Ethernet adapter, and as such QDIO Guest LANs have IP
broadcast support as they are a simulated Ethernet LAN. All examples in this Redpaper use
the QDIO Guest LAN and not the HiperSockets Guest LAN.

Guest LAN configuration
While the creation of a Guest LAN is covered in other publications, for ease of reference we
review here the steps required to create a Guest LAN and how to connect a Linux guest to
that LAN. The steps are:

1. Create a z/VM Guest LAN segment in the z/VM host system.

2. Create a virtual Network Interface Card (NIC) in each guest machine that will be
connected to the Guest LAN.

3. Connect the virtual NIC in each guest machine to the Guest LAN.

4. Once the Linux guest has been booted, configure the appropriate device drivers in that
guest to connect to the Guest LAN.

Create a z/VM Guest LAN
z/VM Guest LANs can be created in one of two ways: either via a DEFINE LAN statement in
the z/VM CP SYSTEM CONFIG file, or by using the DEFINE LAN CP command. Why choose
one over the other? Guest LANs created with the DEFINE LAN command are only valid for the
life of a z/VM system. In other words, if that system is shut down and then IPLed, then the
Guest LAN will no longer be defined.

We recommend that for production Guest LANs, you make a permanent entry in the CP
SYSTEM CONFIG file. For testing purposes, the DEFINE LAN command is perfectly valid, as it
provides the flexibility to dynamically create Guest LANs as required.

Permanent Guest LANs
In order to define a permanent Guest LAN, we need to add a DEFINE LAN statement to the CP
SYSTEM CONFIG file. For a complete discussion of making changes to this file, refer to the
relevant level of the z/VM reference manual (in this Redpaper, we used z/VM Version 4
Release 3.0 CP Planning and Administration, SC24-6043).

Note: Even though QDIO and HiperSockets Guest LANs are different, when it comes to
defining the virtual Network Interface Card to the Linux guest, they both use the same
QDIO and QETH device drivers. However, QDIO Guest LANs use a device identifier of
ethx and HiperSockets Guest LANs use a device identifier of hsix.

Tip: While the syntax in the following sections is valid, we recommend that you always
refer to the relevant level of z/VM reference manual for a complete description of all
command syntax. For the following examples, we used z/VM Version 4 Release 3.0 CP
Planning and Administration, SC24-6043, and z/VM Version 4 Release 3.0 CP Command
and Utility Reference, SC24-6008.
4 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

The syntax of the DEFINE LAN statement is as follows:

DEFINE LAN lanname [operands]

where:

lanname is a 1- to 8-character alphanumeric name of the z/VM Guest LAN

operands define the characteristics of the z/VM Guest LAN

Operands accepted by the DEFINE LAN statement are summarized in Table 1.

Table 1 Operands of the DEFINE LAN statement

Operand Description

OWNERid ownerid Establishes the owner of the LAN. When
OWNERid * is specified, the owner is the invoker.
In our examples, the ownerid will be SYSTEM.

TYPE lantype Specifies the type of LAN. Valid types are
HIPERsockets for simulated HiperSockets
adapters, or QDIO for simulated QDIO adapters.
HiperSockets is the default.

MAXCONN maxconn Sets the maximum number of simultaneous
adapter connections permitted.
When MAXCONN is specified as INFinite, there
is no limit on the number of connectionsa.

Any other value limits the number of
simultaneous connections to a decimal value in
the range of 1 to 1024.

MFS size Sets the Maximum Frame Size (MFS) for
adapters on this network. When an adapter is
connected to this LAN, it will adopt the network
MFS.

The MFS value determines the amount of
storage to be allocated for internal structures,
and limits the effective Maximum Transfer Unit
(MTU) size for the coupled adapters.

The MFS operand is not valid for the QDIO Guest
LAN; however, the effective MFS is 8 K for a
QDIO adapter.

UNRESTricted Defines a LAN with no access control, therefore
any user may connect to the LAN. When neither
UNRESTricted or RESTricted are specified, then
UNRESTricted is the default valueb.

RESTricted Defines a LAN with an access list to restrict
connections. The LAN owner will use the SET LAN
command to grant or revoke access to specific
VM users (by user ID).

The COUPLE command will only allow authorized
users (those on the access list) to connect a
simulated adapter to a RESTRICTED network.
Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 5

As an example, to create a QDIO type Guest LAN named TSTLAN owned by SYSTEM, use:

DEFINE LAN TSTLAN OWNERID SYSTEM TYPE QDIO

The VMLAN statement
In addition to the DEFINE LAN statement, we can also add a VMLAN statement to the CP
SYSTEM CONFIG file to establish system-wide attributes for all z/VM Guest LANs that have
been defined to the z/VM operating system.

The syntax of the VMLAN statement is as follows:

VMLAN LIMIT [operands]

or

VMLAN ACCOUNTing [operands]

where:

operands define the attributes to be set for all z/VM Guest LANs in the system.

Operands accepted by the VMLAN command are summarized in Table 2 on page 7.

ACCOUNTING value Allows a Class B user to control whether
accounting records are created for the LAN being
defined.

GRANT userlist Defines the list of users to be included in the
Initial Access List of a RESTRICTED LAN.

If the GRANT operand is omitted, then the default
is to GRANT the LAN owner.

a. While an “infinite” number of connections is somewhat optimistic, the actual number will be
determined by the physical resources you have defined to your z/VM system. What it does
mean, however, is that for practical purposes, you should not run out of connections.
b. We use unrestricted LANs in all of our examples.

Operand Description

Tip: While LIMIT and ACCOUNTING are both valid parameters of the VMLAN statement,
they cannot coexist within a single VMLAN statement. If you want to have definitions for both
LIMIT and ACCOUNTING, then create two VMLAN statements in the SYSTEM CONFIG file.
6 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Table 2 Operands of the VMLAN statement

Non-permanent Guest LANs
If we want to define a z/VM Guest LAN that will be available only for the “life of an IPL” (that is,
it will be valid only while the system is up and will not be active after the system is next IPLed),
then we can use the CP DEFINE LAN command. We recommend using this command (as
opposed to placing a permanent entry in the SYSTEM CONFIG file) if you require the Guest
LAN only for testing purposes.

The syntax of the DEFINE LAN command is as follows:

DEFINE LAN lanname [operands]

where

lanname is a 1- to 8-character alphanumeric name of the z/VM Guest LAN

operands define the characteristics of the z/VM Guest LAN

Operands accepted by the DEFINE LAN command are summarized in Table 3 on page 8.

LIMIT parameter operands Description

PERSistent INFinite | maxcount INFinite means that there will be an infinite
number of PERSISTENTa z/VM Guest LAN
segments allowed on the system. INFinite is the
default.
Use the maxcount parameter to define a number
of PERSISTENT Guest LANS (between 0 and
1024) permitted to run on the system.

a. A Persistent LAN is created when the DEFINE LAN SYSTEM CONFIG file statement is used
to create a LAN during system initialization, or when a Class B user defines a SYSTEM owned
LAN. The term “Persistent” means that a LAN will survive when its owner performs a LOGOFF
from the system. A Persistent LAN can only be removed by an explicit DETACH LAN command.
Persistent LANs will not persist across IPLs of the z/VM system unless they are defined in the
SYSTEM CONFIG file.

TRANSient INFinite | maxcount INFinite means that there will be an infinite
number of TRANSIENTb z/VM Guest LAN
segments allowed on the system. INFinite is the
default.
Use the maxcount parameter to define a number
of TRANSIENT Guest LANS (between 0 and
1024) permitted to run on the system

b. A Transient LAN is created when the DEFINE LAN command is used to define a general user
LAN. A Transient LAN will exist as long as the owning VM user is logged on to the system. Once
the owner logs off the VM system, then the transient LAN will be removed by the CP (provided
no simulated NICs are coupled to the LAN).

ACCOUNTing parameter operands Description

ACNT | ACCOUNTing SYSTEM ON | OFF Set the default accounting state for z/VM Guest
LAN segments owned by the SYSTEM user ID.
The default state of this attribute is OFF.

ACNT | ACCOUNTing USER ON | OFF Set the default accounting state for z/VM Guest
LAN segments owned by individual users.
The default state of this attribute is OFF.
Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 7

Table 3 Operands of the CP DEFINE LAN command

We can use the SET LAN CP command to dynamically adjust the attributes of a Guest LAN.
We use the QUERY LAN CP command to display the LANs defined to the system.

Create a virtual Network Interface Card
You must create a virtual Network Interface Card (NIC) for each guest machine. Once
defined, this NIC can be connected to the Guest LAN. To the guest operating system, the NIC
devices look like a range of OSA-type devices. The NIC can be defined permanently via a
User Directory statement or temporarily (for the life of the Guest’s session) via a CP
command.

Operand Description

OWNERid ownerid Establishes the owner of the LAN. When
OWNERid * is specified, the owner is the invoker.
This is the default.

TYPE lantype Specifies the type of LAN. Valid types are
HIPERsockets for simulated HiperSockets
adapters, or QDIO for simulated QDIO adapters.
HiperSockets is the default.

MAXCONN maxconn Sets the maximum number of simultaneous
adapter connections permitted. When
MAXCONN is specified as INFinite, there is no
limit on the number of connections. Any other
value limits the number of simultaneous
connections to a decimal value in the range of
1 to 1024 (inclusive).

MFS size Sets the Maximum Frame Size (MFS) for
adapters on this network. When an adapter is
connected to this LAN, it will adopt the network
MFS. The MFS value determines the amount of
storage to be allocated for internal structures and
limits the effective Maximum Transfer Unit (MTU)
size for the coupled adapters.

The MFS operand is not valid for the QDIO Guest
LAN; however, the effective MFS is 8 K for a
QDIO adapter.

UNRESTricted Defines a LAN with no access control, therefore
any user may connect to the LAN. When neither
UNRESTricted or RESTricted are specified, then
UNRESTricted is the default value.

RESTricted Defines a LAN with an access list to restrict
connections. The LAN owner will use the SET LAN
command to grant or revoke access to specific
VM users (by user ID). The COUPLE command will
only allow authorized users (those on the access
list) to connect a simulated adapter to a
RESTRICTED network.

ACCOUNTING value Allows a Class B user to control whether
accounting records are created for the LAN being
defined.
8 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

NIC definition in the User Directory
To create a virtual Network Interface Card that will remain permanently defined to a VM guest
machine (that is, across guest sessions and across IPLs of the z/VM operating system), use
the SPECIAL statement in the z/VM User Directory. The SPECIAL statement defines virtual
devices that are fully simulated by CP and not connected to real devices at definition time.

The syntax of the SPECIAL statement for Network Interface Cards is as follows:

SPEcial vdev [operands]

where

vdev specifies the base virtual device address for the adapter

operands define the characteristics of the virtual NIC

Operands accepted by the SPECIAL command are listed in Table 4.

Table 4 Operands for the SPECIAL User Directory statement

An example CP User Directory entry for a Linux guest that connects to a QDIO Guest LAN is
shown in Example 1.

Example 1 User directory entry for a Linux guest - connecting to a QDIO Guest LAN

USER LNX23 LNX23 128M 1G G
 INCLUDE IBMDFLT
 IPL 190 PARM AUTOCR
 MACHINE XA
 CONSOLE 0009 3215
 SPECIAL 0700 QDIO 3 SYSTEM TSTLAN
 MDISK 0191 3390 3274 025 LEVW01 MR READ WRITE MULTIPLE
 MDISK 0201 3390 3339 0200 LX3EA3 MR READ WRITE MULTIPLE
 MDISK 0202 3390 3539 3138 LX3EA3 MR READ WRITE MULTIPLE

Operands Description

HIPERs | QDIO HIPERs indicates that a simulated HiperSockets
adapter should be created. QDIO indicates that a
simulated QDIO adapter should be created. If a
Guest LAN of the appropriate type is found when
the guest logs on to the system, then the NIC will
be automatically coupled to the LAN specified in
the ownerid lanname parameter (see below).

devs The number (decimal) of virtual I/O devices to be
created for a simulated NIC. If devs is omitted,
then the default number of devices is 3.

ownerid | * lanname Identifies a Guest LAN segment for an immediate
connection to the NIC. If ownerid and lanname
are omitted, then the simulated adapter is left in
the uncoupled state. When ownerid and lanname
are specified, the adapter is automatically
connected to the designated Guest LAN. Note
that the ownerid can be specified as a name or by
using an asterisk (*) to represent the user ID of
the current virtual machine.
Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 9

NIC definition using CP commands
To create a virtual Network Interface Card that will last for the life of a Guest (that is, it will
need to be redefined when the Guest next logs on to the system), use the following command
syntax:

DEFINE NIC vdev [operands]

where

vdev specifies the base virtual device address for the adapter

operands define the characteristics of the virtual NIC

Operands accepted by the DEFINE NIC command are listed in Table 5.

Table 5 Operands for the DEFINE NIC command

Connect the virtual NIC to the Guest LAN
Now that we have defined the virtual NIC, just like in a real network we now want to connect
that device to the LAN. If we had used the SPECIAL User Directory statement to define our

Operands Description

HIPERsockets Defines this adapter as a simulated HiperSockets
NIC. This adapter will function like the
HiperSockets internal adapter (model 1732-05).
A HiperSockets NIC can function without a z/VM
Guest LAN connection, or it can be coupled to a
HiperSockets Guest LAN.

QDIO Defines this adapter as a simulated QDIO NIC.
This adapter will function like the OSA Express
(QDIO) adapter (model 1731-01). A QDIO NIC is
only functional when it is coupled to a QDIO
Guest LAN.

DEVices devs Determines the number of virtual devices
associated with this adapter.
- For a simulated HiperSockets adapter, devs
must be a decimal value between 3 and 3072
(inclusive).
- For a simulated QDIO adapter, devs must be a
decimal value between 3 and 240 (inclusive).
The DEFINE NIC command will create a range of
virtual devices from vdev to vdev + devs -1, to
represent this adapter in your virtual machine.
The default value is 3.

CHPID nn A two-digit hexadecimal number that represents
the CHPID number the invoker wants to allocate
for this simulated adapter. If the requested
CHPID number is available, all of the virtual
devices belonging to this adapter will share the
same CHPID number. This option is only useful if
you need to configure a virtual environment with
predictable CHPID numbers for your simulated
devices.

Important: We have added the syntax for HiperSockets devices simply for completeness;
for broadcast support, keep in mind that we have to use a Guest LAN type of QDIO.
10 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

NIC, the guest machine would automatically connect to the LAN whenever it logged on to
system. However, if we chose to use the DEFINE NIC command, we have an additional step to
perform before the device is connected to the Guest LAN.

Use the COUPLE CP command to attach the virtual NIC to a compatible Guest LAN. The syntax
of the COUPLE command for this scenario is as follows:

COUPLE vdev TO [operands]

where

vdev specifies the base virtual device address for the adapter

operands defines where to connect the NIC device

Operands accepted by the COUPLE command for the purpose of connecting a virtual NIC to a
Guest LAN are listed in Table 6.

Table 6 Operands for the Couple command

Remember that a virtual NIC can only be coupled to a compatible Guest LAN. For example, a
QDIO NIC cannot be coupled to a Guest LAN of type “HIPERsockets”.

Example of building a z/VM Guest LAN
In Example 2, we demonstrate how to build a z/VM Guest LAN.

Example 2 Steps to build a z/VM Guest LAN

DEFINE LAN TSTLAN OWNERID SYSTEM TYPE QDIO 1
LAN SYSTEM TSTLAN is created
Ready; T=0.01/0.01 17:17:30

DEFINE NIC 0700 QDIO 2
NIC 0700 is created; devices 0700-0702 defined
Ready; T=0.01/0.01 17:22:40

COUPLE 0700 TO SYSTEM TSTLAN 3
NIC 0700 is connected to LAN SYSTEM TSTLAN
Ready; T=0.01/0.01 17:23:04

1. Define a QDIO Guest LAN owned by SYSTEM. This command was run from the MAINT
user.

2. Define a Network Interface Card (NIC) of type QDIO. This command was run from Linux
guest user LNX23.

3. Couple the NIC to the Guest LAN. This command was also run from LNX23.

Operands Description

vdev The Base address of the network adapter

ownerid lanname The ownerid is the name of the owner of the
Guest LAN (for example, SYSTEM). The
lanname is the name of the Guest LAN.

Tip: If you choose to use the DEFINE NIC and COUPLE approach instead of the SPECIAL User
Directory statement, consider adding these two commands into your guest’s PROFILE
EXEC file so they are automatically executed whenever the guest logs on.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 11

Now that we have built a Guest LAN, we can use the CP QUERY LAN command to verify the
status of the LAN, as shown in Example 3.

Example 3 CP QUERY LAN command

QUERY LAN TSTLAN ACTIVE
LAN SYSTEM TSTLAN Type: QDIO Active: 1 MAXCONN: INFINITE
 PERSISTENT UNRESTRICTED MFS: 8192 ACCOUNTING: OFF
 Adapter Owner: LNX23 NIC: 0700 Name: UNASSIGNED
Ready; T=0.01/0.01 17:36:49

Notice from the example that one Linux guest (LNX23) is connected to the Guest LAN.

In order to display information about the virtual NIC that we have defined, we can use the
QUERY NIC CP command as shown in Example 4. If we use the DETAILS parameter of this
command, we can get additional information about the IP addresses bound to this NIC and
the amount of data that has been transmitted and received through this interface (TX
packets/bytes and RX packets/bytes, respectively).

Notice that in Example 4, there is no IP addressing information and the number of bytes
transmitted and received are both zero. Also, the portname value is set to UNASSIGNED.
This tells us that the Linux guest has not started using this device for TCP/IP
communications.

Example 4 CP QUERY NIC commands

QUERY NIC
Adapter 0700 Type: QDIO Name: UNASSIGNED Devices: 3
 Port 0 MAC: 00-04-AC-00-00-01 LAN: SYSTEM TSTLAN MFS: 8192
Ready; T=0.01/0.01 17:51:51

QUERY NIC DETAILS
Adapter 0700 Type: QDIO Name: UNASSIGNED Devices: 3
 Port 0 MAC: 00-04-AC-00-00-01 LAN: SYSTEM TSTLAN MFS: 8192
 RX Packets: 0 Discarded: 0 Errors: 0
 TX Packets: 0 Discarded: 0 Errors: 0
 RX Bytes: 0 TX Bytes: 0
 Unassigned Devices:
 Device: 0700 Unit: 000 Role: Unassigned
 Device: 0701 Unit: 001 Role: Unassigned
 Device: 0702 Unit: 002 Role: Unassigned
Ready; T=0.01/0.01 17:51:54

Finally, we said that the virtual NIC simulates an OSA express QDIO device. This is confirmed
by using the CP command QUERY VIRTUAL OSA from the guest machine, as shown in
Example 5.

Example 5 CP QUERY VIRTUAL OSA command

QUERY VIRTUAL OSA
OSA 0700 ON NIC 0700 UNIT 000 SUBCHANNEL = 000E
 0700 QDIO-ELIGIBLE
OSA 0701 ON NIC 0700 UNIT 001 SUBCHANNEL = 000F
 0701 QDIO-ELIGIBLE
OSA 0702 ON NIC 0700 UNIT 002 SUBCHANNEL = 0010
 0702 QDIO-ELIGIBLE
Ready; T=0.01/0.01 17:57:19
12 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Undoing the definitions
Before moving on to describe how to connect a Linux guest to the Guest LAN, we review how
to undo the previous definitions in an orderly fashion. (This is shown only for completeness,
and you should not follow these steps unless you no longer wish to use the z/VM Guest LAN
that you created.)

Disconnect from a Guest LAN
The CP UNCOUPLE command is used to disconnect a virtual NIC from a Guest LAN segment.
The command is illustrated in Example 6.

Example 6 UNCOUPLE command

UNCOUPLE 700
NIC 0700 is disconnected from LAN SYSTEM TSTLAN
Ready; T=0.01/0.01 18:37:15

Remove the virtual NIC from the guest machine
The CP DETACH NIC command is used to remove a virtual NIC from a guest machine. The
command disconnects the virtual adapter from the Guest LAN (assuming the UNCOUPLE
command has not been invoked) and removes each virtual device that has been created.
Example 7 illustrates the DETACH NIC command.

Example 7 DETACH NIC command

DETACH NIC 0700
NIC 0700 is destroyed; devices 0700-0702 detached
Ready; T=0.01/0.01 18:40:39

Remove the Guest LAN
The CP DETACH LAN command is used to remove a Guest LAN from the system. This
command removes the LAN from the System LAN Table, disconnects any virtual adapters
that were using the LAN, and releases system resources associated with the LAN. Example 8
illustrates the DETACH LAN command.

Example 8 DETACH LAN command

DETACH LAN TSTLAN
LAN SYSTEM TSTLAN is destroyed
Ready; T=0.01/0.01 18:44:29

Configuring Linux to connect to a Guest LAN
Now that we have created a z/VM Guest LAN and connected our guest’s virtual NIC to that
LAN, the final step is to boot the Linux operating system and load the relevant device driver
for the virtual Network Interface Card. This driver is called the QETH device driver.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 13

In the examples that follow we assume you are running a 2.4.19 kernel and have the
compatible level of the QETH device driver. The compatible level of this driver is available for
download at:

http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml

The downloaded driver is an Object Code Only (OCO) module, which means there is no
requirement to compile this driver. For an example of how to copy this driver into your Linux
environment, see “Copy OCO modules” on page 49.

To determine if you have the correct level of the QETH device drive, check the revision
number. If your revision numbers are lower than those in Example 9, your QETH device driver
will not have support for IP broadcast.

Example 9 Checking the driver revision level

lnx20:~ # strings /lib/modules/2.4.19/kernel/net/qeth.o | grep Revis

QDIO OSA-Express driver ($Revision: 1.260.2.16 $)
qeth S/390 OSA-Express driver ($Revision: 1.260.2.16 $/$Revision: 1.86.2.2 $/$Revision:
1.31.4.1 $:IPv6:VLAN)

Before we load the QETH driver, we must first pass configuration information about the virtual
NIC to the Linux kernel’s Channel Device Layer.

Channel Device Layer
The Channel Device Layer provides a common interface to zSeries and System/390 channel
attached devices. This interface can be used to configure (among other things) the simulated
QDIO Network Interface Card that we have defined and connected to the z/VM Guest LAN.

Restriction: The QETH device driver supports OSA Express ethernet cards and the z/VM
Guest LAN’s simulated QDIO NIC. The level of QETH device driver that we need for DHCP
in a Guest LAN was built at revision number 1.260.2.16. This code is available for
download from:

http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml

The QETH device driver we require was built at the 2.4.19 level of the Linux kernel. Our
test environment was running the standard SuSE Linux Enterprise Server (SLES) 7
distribution (31-bit) which uses the 2.4.7 Linux kernel. Therefore, we had to upgrade our
kernel. For a description of how to upgrade from the 2.4.7 kernel to the 2.4.19 kernel, see
Appendix , “Upgrading your Linux kernel” on page 45.

In theory, any Linux distribution available for System/390 or zSeries that can run a 2.4.19
kernel should be able to load the appropriate QETH driver and thus exploit broadcast
support in a z/VM Guest LAN. However, due to limited resources, our testing only covered
the SuSE distribution.

Tip: For a detailed review of the Channel Device Layer and the syntax of the QETH device
driver configuration, refer to the appropriate level of the device drivers manual. For this
Redpaper, we used Linux for zSeries and S/390 Device Drivers and Installation
Commands, July 31, 2002, Linux Kernel 2.4 LNUX-1303-01.

The document can be downloaded from the following URL:

http://www10.software.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf
14 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www10.software.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf
http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml
http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml
http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml
http://www10.software.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf

There are three ways to pass configuration settings to the Channel Device Layer.

1. By redirecting the settings to the /proc/chandev file. This file holds the current
configuration of the channel device layer.

2. By adding the settings to the /etc/chandev.conf file.

3. By using the ‘chandev=’ keyword on the Linux Kernel boot command line.

For testing purposes we used the first method; that is, we redirected the configuration settings
into the /proc/chandev file. Once we were satisfied that the configuration was correct, we
automated the process so that the driver was loaded at Linux boot time by adding our settings
to the /etc/chandev.conf file.

The configuration settings we redirected to the /proc/chandev file are shown in Example 10.

Example 10 Redirecting QETH device driver settings to /proc/chandev

echo 'noauto ' >>/proc/chandev
echo 'qeth-1,0x0700,0x0701,0x0702,0,0 '>>/proc/chandev
echo 'add_parms,0x10,0x0700,0x0702,portname:TSTLAN ' >>/proc/chandev

Table 7 describes each of these settings.

Table 7 QETH device driver parameters

Parameter Description

noauto This stops auto-detection of channel devices.

qeth-1,0x0700,0x0701,0x0702,0,0 qeth-1

This is the device interface number. A value
of -1 indicates that the next available device
number will be automatically allocated. For
example, if we already had qeth0 and
qeth1 devices defined to the Channel
Device Layer, then the next device to be
defined would be qeth2.

0x700

This is the read subchannel address.

0x701

This is the write subchannel address.

0x702

This is the data subchannel address.

0,

The number of kilobytes to be allocated for
read and write buffers.

0 specifies the default value (8192 KB in
QDIO mode).

0

The relative port number of the CHPID.
OSA Express devices (including our
simulated QDIO NIC) use only port 0.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 15

A partial extract from the /proc/chandev, showing only the changes after we redirected our
settings for the virtual NIC, is shown in Example 11.

Example 11 Partial contents of /proc/chandev after redirecting the QETH device driver settings

No auto devno ranges 1
 From To
====================
 0x0000 0xffff

Forced devices
chan defif read write data memory port ip hw host
type num devno devno devno usage(k) protocol no. chksum stats name
===
0x10 0 0x0700 0x0701 0x0702 default 0 0 0

Initialised Devices
 read write data read write data chan port dev dev
 irq irq irq devno devno devno type no. ptr name
===
0x0011 0x0012 0x0013 0x0700 0x0701 0x0702 0x10 0 0x04467200 eth0 8192 2

channels detected
 chan cu cu dev dev in chandev
 irq devno type type model type model pim chpids use reg.
===
0x0011 0x0700 0x10 0x1731 0x01 0x1732 0x01 0x80 0x0600000000000000 yes yes
0x0012 0x0701 0x10 0x1731 0x01 0x1732 0x01 0x80 0x0600000000000000 yes yes
0x0013 0x0702 0x10 0x1731 0x01 0x1732 0x01 0x80 0x0600000000000000 yes yes

 driver specific parameters

add_parms,0x10,0x0700,0x0702,portname:TSTLAN add_parms

Used to pass additional parameters to the
driver.

0x10

Identifies the device as an OSA-Express
CHPID in QDIO mode.

0x700,0x702

The desired device address range.

portname:TSTLAN

This identifies the port name as TSTLAN.
This is the name of our z/VM Guest LAN.

Tip: Strictly speaking, the portname parameter (in our case, TSTLAN) is not required for
z/VM Guest LANs (if the device were a real OSA-Express interface, the portname would be
required and must match the name defined in the adapter hardware definition).

However, we recommend that you specify the portname whenever you configure a z/VM
Guest LAN interface. The name you choose is unimportant, but for consistency we
recommend you use the z/VM Guest LAN segment name.

Parameter Description
16 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

chan lo hi driver
type devno devno parameters
===
0x10 0x0700 0x0702 portname:TSTLAN, 3

1. We chose to use noauto. As we did not specifiy any devices, autodetection has been
turned off for all devices.

2. Our three devices (0x700,0x701,0x702) have been initialized. They are of channel type
0x10, meaning they are defined as an OSA Express QDIO-style device, and the device
name as it will appear to the TCP/IP stack is eth0.

3. The z/VM Guest LAN that we are connected to has a portname called TSTLAN.

Loading the device driver
Now that the Channel Device Layer contains our virtual NIC definitions, we can activate the
virtual NIC device. To do that, we must load the appropriate device drivers. These device
drivers are called qdio and qeth.

The qdio driver is the underlying controlling driver for all devices that use the QDIO
architecture. The qeth driver is specifically for our virtual NIC or for a real OSA Express card
or HiperSockets interface. In Linux, these device drivers are implemented as kernel modules.

First, we determine if the qdio and qeth device driver modules are already loaded by using the
lsmod command, as shown in Example 12.

Example 12 lsmod command output

lnx20:~ # lsmod
Module Size Used by
qeth 149232 1 (autoclean)
qdio 40128 1 (autoclean) [qeth]
ipv6 254016 -1 (autoclean) [qeth]

We see the modules are loaded - this is because we used an OSA Express card for
connectivity to the Linux guest.

Assuming the qdio and qeth modules were not loaded, we could use the following syntax to
load these drivers:

insmod qdio
insmod qeth

An example illustrating the output on the Linux guest’s 3270 session when loading the device
drivers is shown in Example 13 on page 18.

Important: If the Linux system has the qdio and qeth modules already loaded, you would
not want to unload and reload those modules just to enable the virtual NIC device, because
doing so would disrupt connectivity to the devices which rely on those modules.

Instead, once you have redirected the settings for the virtual NIC to the Channel Device
Layer, you can activate the new device by using the following command:

echo reprobe >/proc/chandev

The system will detect uninitialized channel devices and make them available for use.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 17

Example 13 Load the qdio and qeth device drivers

insmod qdio
Using /lib/modules/2.4.19/kernel/drivers/s390/qdio.o
qdio: loading QDIO base support version 2 ($Revision: 1.120.2.1 $/$Revision: 1.5
6.2.1 $)
debug: qdio_setup: new level 2
debug: qdio_labs: new level 2
debug: qdio_sense: new level 2
debug: qdio_trace: new level 2

insmod qeth
Using /lib/modules/2.4.19/kernel/net/qeth.o
qeth: loading qeth S/390 OSA-Express driver ($Revision: 1.260.2.10d$/$Revision:
1.86.2.1 $/$Revision: 1.31 $:IPv6)
 qeth: allocated 0 spare buffers
debug: qeth_setup: new level 3
debug: qeth_misc: new level 2
debug: qeth_data: new level 2
debug: qeth_control: new level 2
debug: qeth_sense: new level 2
debug: qeth_qerr: new level 2
debug: qeth_trace: new level 2
qeth: Trying to use card with devnos 0x700/0x701/0x702
qeth: Device 0x700/0x701/0x702 is an OSD Express card (level: 2938)
with link type Gigabit Eth (portname: TSTLAN)
 qeth: IPv6 not supported on eth0

In Example 14, we double-check that the device drivers were loaded.

Example 14 Output of the lsmod command

lnx20:~ # lsmod
Module Size Used by
qeth 149232 1 (autoclean)
qdio 40128 1 (autoclean) [qeth]
ipv6 254016 -1 (autoclean) [qeth]

If we run a CP QUERY NIC DETAILS command from the Linux guest’s 3270 session, we see in
Example 15 on page 19 that the NIC has now been linked to the Guest LAN at both a CP and
Linux device driver level.

Tip: For completeness, our example used the insmod command to insert the two modules.
To make things easier, we could have used the modprobe command.

The modprobe command will determine what dependencies a module has to other
modules and automatically load those other modules as well. So in our example, a
modprobe qeth would load both the qeth and qdio modules.
18 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Example 15 QUERY NIC DETAILS example

#CP Q NIC DET
Adapter 0700 Type: QDIO Name: TSTLAN 1 Devices: 3
 Port 0 MAC: 00-04-AC-00-00-01 LAN: SYSTEM TSTLAN MFS: 8192
 RX Packets: 0 Discarded: 0 Errors: 0
 TX Packets: 0 Discarded: 0 Errors: 0
 RX Bytes: 0 TX Bytes: 0
 Connection Name: HALLOLE State: Session Established
 Device: 0700 Unit: 000 Role: CTL-READ
 Device: 0701 Unit: 001 Role: CTL-WRITE
 Device: 0702 Unit: 002 Role: DATA

1. The Name field is the portname as assigned by the channel device layer. Prior to loading
the device drivers, the value of this field was set to UNASSIGNED. After making our
changes to /proc/chandev and loading the device drivers, we see that we now have a
value of TSTLAN, which matches the name of our Guest LAN.

With the assumption that everything has worked correctly, you should now be able to run the
ifconfig -a command to check that the virtual NIC is now available for use. Output of this
command is shown in Example 16.

Example 16 Output of the ifconfig -a command

eth0 Link encap:Ethernet HWaddr 00:04:AC:00:00:01
 MULTICAST MTU:1492 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:17

We could now use the ifconfig command to configure an IP address so that the guest could
communicate with other machines on the Guest LAN. However, since we now have
“broadcast support”, we chose to use a DHCP client to lease an address from a DHCP server
machine that is running on the Guest LAN. This is covered in “Implementing DHCP in a z/VM
Guest LAN” on page 34.

Now that we have tested the new network interface, we can make the changes permanent by
adding the configuration settings into the /etc/chandev.conf file. An extract of that file for our
new virtual NIC is shown in Example 17.

Example 17 Entry in /etc/chandev.conf for the virtual NIC

qeth0,0x0700,0x0701,0x0702,0,0;add_parms,0x10,0x0700,0x702,portname:TSTLAN

An explanation of the parameters is covered in Table 7 on page 15.

Note: As a test, we changed the portname defined through /proc/chandev to something
completely different. We found that we were still able to communicate to other Linux
systems on the Guest LAN.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 19

IP addressing
The unit of transfer in an IP network is called an IP datagram. It consists of an IP header and
data relevant to higher level protocols (for example, TCP or UDP). One of the components of
the IP header is the destination machine’s IP address. Depending on the method of IP
datagram delivery, this address could be one of the following types:

1. Unicast address

2. Broadcast address

3. Multicast address

4. Anycast address

In this Redpaper, we are interested in the broadcast address as it enables us to implement
DHCP in a z/VM Guest LAN. However, for completeness, we will review the four different
address types illustrated in Figure 3 on page 21.

Important: Before rebooting your Linux guest, you should first check the /etc/modules.conf
file to verify that there is an alias entry in the file for your new network interface. For
example, if you have just defined an interface called eth0, be sure that there is a matching
alias statement.

The Kernel will look for a module called eth0, and when it can’t find it, it will check to see if
eth0 is actually an alias for another module. In our case, eth0 is really the qeth module, so
our /etc/modules.conf file contains the line:

alias eth0 qeth
20 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Figure 3 IP packet delivery modes (showing delivery from source to destination)

Unicast
Most destination IP addresses are to a single recipient; this is called a unicast address.
Unicast connections specify a one-to-one relationship between a single source and a single
destination.

Broadcast
A broadcast address is a special type of IP address. Using broadcast, a message can be sent
from one machine to all other machines on a LAN segment. The sending machine can do this
without having to know the IP addresses of all the other machines.

This becomes useful when a machine wishes to send information to all other machines on a
LAN (to let all machines know of an update to a critical piece of networking information such
as a change of DNS address, for example). Broadcast is also useful when a machine does
not know the address of its neighbors, but wishes to request services from a machine on the
LAN. A classic example of this is the Dynamic Host Configuration Protocol (DHCP). Using
DHCP, a machine will send out a broadcast request asking “somebody” (it doesn’t know
whom) to lease it an IP address.

As discussed previously, IP Broadcast support was made available for z/VM Guest LANs with
the introduction of z/VM 4.3 and APAR VM63172. There are several different types of
broadcast addresses; however, the one used by a DHCP client is called the Limited
broadcast address. This uses the address 255.255.255.255 (all bits set to 1 in the IP
destination address). It refers to all hosts on the local subnet and is recognized by every host.
Routers do not forward this packet.

Unicast Broadcast

Multicast Anycast

Src

Src

Src

Src

Dest

Dest

Dest

Dest

Dest

Dest

Dest

Dest

Dest

Dest
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 21

One exception to this rule is called BOOTP forwarding. The BOOTP protocol (a forerunner to
DHCP) uses the limited broadcast address to allow a diskless workstation to contact a boot
server. BOOTP forwarding is a configuration option available on some routers. Without this
facility, a separate BOOTP server is required on each subnet.

Multicast
If an IP datagram is broadcast to a subnet, it is received by every host on the subnet. Each
host processes the packet to determine if the target protocol is active. If it is not active, the IP
datagram is discarded. Multicasting avoids this overhead by selecting destination groups.
Each destination group is represented by a special IP address known as a multicast address.
For each multicast address, a set of one or more hosts are listening for packets addressed to
that destination address. This set of hosts is called the host group. Packets sent to a multicast
address are forwarded only to the members of the corresponding host group. Multicast
enables one-to-many connections (see Figure 3 on page 21).

Anycast
Sometimes, the same IP services are provided by different hosts; for example, a user wants
to download a file via FTP and the file is available on multiple FTP servers. Hosts that
implement the same service provide an anycast address to other hosts that require the
service. Connections are made to the first host in the anycast address group to respond. This
process is used to guarantee the service is provided by the host with the best connection to
the receiver.

An introduction to DHCP
Dynamic Host Configuration Protocol (DHCP) is a TCP/IP protocol which allows clients to
obtain IP network configuration information (including an IP address) from a central DHCP
server. The DHCP server controls whether the address it provides to a client is allocated
permanently or is leased for a period of time. When a client receives a leased address, it must
periodically request that the server re-validate the address and renew the lease. The
predecessor to DHCP was called the Bootstrap Protocol (BOOTP). BOOTP did not support
address leasing.

The following components make up a DHCP environment:

1. DHCP clients

In our example, these are Linux guest machines that run the DHCP client program.

2. DHCP Server

This is one or more machines that provide the IP address and configuration information to
DHCP clients on the network. In our example, the DHCP server will be a Linux guest that
has a static IP address.

3. DHCP Relay Agent

Relay Agents are used in IP routers to forward information between DHCP clients and
servers on different subnets. DHCP Relay Agents eliminate the need for a DHCP server
on each subnet. We will not be implementing a DHCP Relay Agent in our examples.

Note: DHCP specifications are described by RFC 2131 “Dynamic Host Configuration
Protocol” and RFC 2132 “DHCP options and BOOTP Vendor Extensions”, which are
available from the Internet at:

http://www.ietf.org/rfc.html
22 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html

These components are illustrated in Figure 4.

Figure 4 DHCP network components

DHCP defines three IP address allocation policies:

� Dynamic

A DHCP server assigns a temporary, leased IP address to a DHCP client.

� Static

A DHCP server assigns a static, predefined address that is reserved for a specific DHCP
client.

� Permanent

A DHCP server assigns a permanent IP address to a DHCP client. No lease renewal is
required.

Obtaining configuration information
DHCP clients can obtain an IP address and other configuration information through a request
dialog with a DHCP server, as illustrated in Figure 5 on page 24.

Restriction: In a z/VM Guest LAN environment, the MAC address of the virtual Network
Interface Card is assigned randomly (within certain predefined boundaries). This is
because the MAC address is not associated with a physical card, but instead with a
simulated device. This means that a Linux guest may not get the same MAC address for its
virtual NIC every time it logs on to z/VM.

Typically, DHCP servers use the MAC address of a client to determine if that machine will
be given a dynamic or static/permanent IP address. As we cannot guarantee that a Linux
guest will always have the same MAC address, we need to use another means of
identifying client machines. We can do this using a unique client identifier (discussed in
“Fixed IP address allocation” on page 42).

Subnet 1
(Guest LAN 1)

Subnet 2
(Guest LAN 2)

Subnet 3
(Guest LAN 3)

DHCP Clients DHCP Clients

DHCP Clients

DHCP Server

DHCP Relay Agent

Router
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 23

Figure 5 DHCP cycle

We now walk through an example of a DHCP client requesting IP configuration information
from a DHCP server.

The DHCP client machine (in our case, a Linux guest) broadcasts a DHCPDISCOVER
message on its local subnet; see Figure 6 on page 25 for an example. This message is used
to request an IP address from any DHCP server that might be listening.

The DHCPDISCOVER message may include other options requested by the client, such as a
subnet mask, domain name server, and domain name. The client can suggest specific values
for some options. Optionally, if routers on the network are configured to forward DHCP and
BOOTP messages, the broadcast message is forwarded to DHCP servers on the attached
subnets

Note: Prior to z/VM 4.3 with APAR VM63172, the DHCPDISCOVER message could not
have been broadcasted across the Guest LAN. That is why DHCP is only capable of
running from that level of z/VM onwards.

SERVER
Sends

DHCPAck

CLIENT
Sends

DHCPRequest

CLIENT
Sends

DHCPDiscover

SERVER
Makes

 DHCPOffer

1

2 3

4

24 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Figure 6 DHCPDISCOVER message broadcast

Each DHCP server (in our example, this is another Linux system on the Guest LAN) will
respond with a DHCPOFFER message that includes an available IP address and other
configuration options; see Figure 7 on page 26 for an example.

The DHCP server checks its configuration file to see if it should assign a static or dynamic
address to this client. In the case of a dynamic address, the server selects an address from
the address pool, choosing the least recently used address. An address pool is a range of IP
addresses available for leasing to clients.

In the case of a static address, the server uses a client-identifier statement from the DHCP
server configuration file to assign options to the client. Upon making the offer, the DHCP
server reserves the offered address to prevent the same address being offered to other
clients in the event of further DHCPDISCOVER messages being received before the first
client has completed its configuration.

Broadcast MAC address via DHCPDISCOVER

DHCP
Client

other guests in the system

other guests in the system

DHCP
Server
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 25

Figure 7 DHCPOFFER message

The DHCP client receives a DHCPOFFER message from one or more servers. The client
chooses an address based on the configuration parameters that were offered. The client then
broadcasts a DHCPREQUEST message (see Figure 8 on page 27) that includes the server
identifier option to indicate which offer it has selected.

If no offers are received, and if the client has knowledge of a previous network address, the
client may reuse that address if its lease is still valid. When the lease expires, it must then go
through the DHCPDISCOVER process again.

DHCP
Client DHCP

Server 1

DHCP
Server 2

DHCP
Server 3

DHCPOFFER from Server 1

DHCPOFFER fro
m Server 2

DHCPOFFER from Server 3
26 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Figure 8 DHCPREQUEST message

If a server receives a DHCPREQUEST message indicating that the client has accepted the
server's offer, the server marks the address as leased. If the server receives a
DHCPREQUEST message indicating that the client has accepted an offer from a different
server, the server returns the address to the available pool. If no message is received within a
specified time, the server returns the address to the available pool. The selected DHCP
server sends an acknowledgment which contains additional configuration information to the
client (DHCPACK message); see Figure 9 on page 28 for an example.

The client determines whether the configuration information is valid. Upon receipt of a
DHCPACK message, the DHCP client sends an Address Resolution Protocol (ARP) request
to the supplied IP address to see if it is already in use. If it receives a response to the ARP
request, the client declines (DHCPDECLINE message) the offer and initiates the process
again. Otherwise, the client accepts the configuration information. By accepting a valid lease,
the client enters a BOUND state with the DHCP server, and proceeds to use the IP address
and options.

For DHCP clients that request options, the DHCP server typically provides configuration
information that includes subnet mask, domain name server (DNS), domain name, and
gateway information.

Broadcast a DHCPREQUEST to get the address offered by server 1

DHCP
Client DHCP

Server 1

DHCP
Server 2

DHCP
Server 3

Server 1
 selected in

dicated in
 th

e UDP packet

Server 1 selected indicated in the UDP packet

Mark the address as leased

Return the address to the pool

Return the address to the pool
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 27

Figure 9 DHCPACK message

Lease renewal
The DHCP client keeps track of how much time is remaining on the lease. At a specified time
prior to the expiration of the lease (usually when half of the lease time has passed), the client
sends a renewal request containing its current IP address and configuration information to the
leasing server. If the server responds with a lease offer, the DHCP client's lease is renewed.

If the DHCP server explicitly refuses the request, the DHCP client may continue to use the IP
address until the lease time expires and then initiate the address request process, including
broadcasting the address request. If the server is unreachable, the client may continue to use
the assigned address until the lease expires.

DHCP relay agent
When a DHCP client and a DHCP server are located in different physical subnets, a DHCP
Relay Agent can be used to forward any DHCP request that it receives on its subnet or from
other subnets in the direction of the DHCP server. When the DHCP client creates a
DHCPDISCOVER packet, a field in the message called RELAY AGENT is set to zeros.

When the Relay Agent intercepts a DHCPDISCOVER message, it examines the RELAY
AGENT field. If the RELAY AGENT field is all zeros (that is, the DHCP message comes
directly from the DHCP client), the Relay Agent will write its own IP address in this field and
then forward the packet to the next hop and increase the hop count.

DHCP
Client DHCP

Server 1

DHCP
Server 2

DHCP
Server 3

DHCPACK plus additional configuration info

Listens on Port 67 for more
 requests

Listens on Port 67 for more
 requests

Listens on Port 67 for more
 requests
28 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

If the RELAY AGENT field is not zero (that is, the DHCP message comes from another Relay
Agent), the Relay Agent just forwards the packet to the next hop and increments the hop
count, without modifying the RELAY AGENT field. This process is repeated until the packet
reaches the DHCP server.

When the DHCP server sends the DHCPOFFER, it sends the message back to the first Relay
Agent and the Relay Agent forwards it to the originating client. Once the client receives an IP
address, the communication is direct between the DHCP server and the DHCP client.

DHCP in a z/VM Guest LAN
A QDIO Guest LAN is a virtualized implementation of a standard Ethernet LAN; the difference
is that the Guest LAN resides solely within the z/VM system and has no physical components.
DHCP behaves the same in a Guest LAN as it does in a “real” LAN.

To get a better understanding of DHCP client/server interaction, we use the network protocol
analyzer tool Ethereal to monitor our DHCP server’s eth2 interface, which is connected to the
the Guest LAN “TSTLAN”. Ethereal is an Open Source software package available from:

http://www.ethereal.com

The syntax to start Ethereal in interactive mode is:

ethereal -i eth2 -k

Our example environment is shown in Figure 10.

Figure 10 Example network environment

z/VM 4.3
OSAOSA

LNX20
DHCP Server

Linux Guests
(DHCP Clients)

LNX2LNX2LNX23

Guest LAN TSTLAN
Network 10.0.3.0

eth0

eth0

10.0.3.20

eth2

10.0.3.20

eth2 eth1

192.168.0.2

LNX2LNX2LNX17

Guest LAN DEVLAN
Network 192.168.0.0

eth0

Linux Guests
(DHCP Clients)
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 29

http://www.ethereal.com

In our example, the Linux guest (LNX23) is booted. Part of the boot process is to configure
the network interface. LNX23 has one network interface called eth0. This interface has been
set up to request a dynamic IP address using the DHCP client program dhcpcd.

As discussed in “Obtaining configuration information” on page 23, when a DHCP client
requests an IP address, it sends out a broadcast DHCPDISCOVER message; see Figure 11
for a dump of this message.

Figure 11 Ethereal output of DHCPDISCOVER message

From this output, we can see that the source address is 0.0.0.0, as the requesting system
does not yet have an IP address. The destination IP address is 255.255.255.255, which is the
limited broadcast address. Because the client has broadcast the DHCPDISCOVER message,
all machines in the subnet will receive the message and any DHCP servers that are listening
(on port 67) will respond.

When the client sends a request to a DHCP server, it sets a transaction ID (in our example,
0x1db686d4). The server copies that transaction ID from the request into the response that it

Note: The DHCP protocol is based on the BOOTP protocol, which is why you see
“Bootstrap Protocol” mentioned in the output.
30 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

sends to the client. When the client reads the response, it checks the transaction ID. If the ID
matches its earlier request, the client processes the message. If there is no match, the
message is discarded. While theoretically possible, it is highly unlikely that two DHCP clients
will simultaneously choose the same transaction ID and thus potentially try to lease the same
IP address from the DHCP server.

The broadcast flag is set on (0x8000) because our client is running the dhcpcd command
with the -B parameter. With this parameter, the client requests that the response from the
DHCP server be sent as a broadcast message.

Once the DHCP server has received the DHCPDISCOVER message from the client, it will
respond with a DHCPOFFER. Figure 12 shows the DHCPOFFER output from the Ethereal
packet sniffer.

Figure 12 Ethereal output of DHCPOFFER message
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 31

From this output, we can see that the source of the DHCPOFFER is 10.0.3.20, which is our
DHCP server. The destination of the DHCPOFFER is the limited broadcast address
255.255.255.255. Because the client specified dhcpcd -B., the server broadcasts the offer.

The client is being offered IP address 10.0.3.98 with a lease time of 28 days. For production
Linux systems, you would probably want a lease time set to several weeks or months. The
client is also being supplied with a subnet mask, DNS addresses, and domain name.

Once the client has received a DHCPOFFER from a server, it will send a DHCPREQUEST
message to that server to ask for the lease. Figure 13 shows the output from Ethereal.

Figure 13 Ethereal output of DHCPREQUEST message

Note: If the DHCP client had not requested a broadcast message, the server’s offer would
have been sent as a unicast message. This does not work in the current Guest LAN
implementation. Obviously, there is a minor overhead in sending the DHCPOFFER to
every DHCP client listening on the subnet; however, we believe that this is negligible when
compared to the value of using DHCP in a Guest LAN.
32 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

From the output, we see that the client has requested IP address 10.0.3.98 (this being the IP
address offered by the server). The DHCPREQUEST is sent as a broadcast message, as
there may have been multiple servers that offered IP addresses to the client. Each server will
check the DHCPREQUEST message. If the IP address in the message is one that it has
offered, the server checks to determine if that address is still available. If so, the server grants
the request by sending a DHCPACK message to the client, as seen in Figure 14.

If a DHCP server determines that the IP address in the DHCPREQUEST message is not one
which it has offered, it discards the message and makes the address available to offer other
requestors.

Figure 14 Ethereal output of DHCPACK message

Prior to accepting the configuration details contained in the DHCPACK, the client needs to
determine if the IP address being offered is valid. The client does this by sending an Address
Resolution Protocol (ARP) request to the IP address to see if it is already in use; another
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 33

system may have manually configured an interface to use the IP address without the
knowledge of the DHCP server.

If the client receives a response to the ARP request, the client declines (DHCPDECLINE
message) the offer and initiates the process again. The safest way to avoid this problem is to
ensure that only authorized administrators have access to change networking settings.

Implementing DHCP in a z/VM Guest LAN

Now that we have reviewed some of the theory behind DHCP and have seen a “real-world”
example of a DHCP client/server conversation, we discuss how to implement DHCP in a
z/VM Guest LAN environment.

In this section, we review the following:

� DHCP server configuration

� DHCP client configuration

� Dynamic DNS updates

� Fixed IP address allocation

DHCP server configuration
The DHCP server was already installed on our SuSE system, as we had selected the
Network Server system configuration option when we originally installed Linux. If the DHCP
server (called dhcpd) is not installed on your system, you can find the RPM package that
contains the server in the n2 directory of the SLES 7 distribution; for example:

/suse/n2/dhcp.rpm

The dhcp.rpm file can be installed from the root user ID by using the following command:

rpm -ivh /suse/n2/dhcp.rpm

Important: Examples in this section use the DHCP client and server packages that are
distributed with the SuSE Linux Enterprise Server (SLES) 7. Specifically we used:

Client

dhcpcd - DHCP Client Daemon v.1.3.19-pl9

available from:

http://www.phystech.com/download/

Server

dhcpd - Internet Software Consortium DHCP Server V3.0rc12

available from:

http://www.isc.org

Note: Our aim is to describe a working example of a DHCP client/server implementation.
This is by no means an exhaustive review of all the features available to DHCP. For a more
complete understanding, we recommend reviewing the documentation that is distributed
with the DHCP RedHat Package Manager (RPM) packages.
34 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www.phystech.com/download/
http://www.phystech.com/download/
http://www.isc.org

The DHCP server must be configured before use. A sample configuration file can be found in:

/usr/share/doc/packages/dhcp/dhcpd.conf

Copy this file to the /etc/dhcpd.conf file, as this is where the DHCP server expects to find its
configuration file. Edit this file for your environment.

Using our test system as an example (see Figure 10 on page 29), we now review the contents
of our dhcpd.conf configuration file. Example 18 provides a listing of the file.

Example 18 /etc/dhcpd.conf DHCP server configuration file

Global options

ddns-update-style none;
authoritative;

Interface parameters for Guest LAN "TSTLAN"
subnet 10.0.3.0 netmask 255.255.255.0 {
 range 10.0.3.25 10.0.3.254;
 default-lease-time 2419200;
 max-lease-time 2419200;
 option subnet-mask 255.255.255.0;
 option domain-name "tstlan.itso.ibm.com";
 option domain-name-servers 10.0.3.20;
}

Interface parameters for Guest LAN "DEVLAN"
subnet 192.168.0.0 netmask 255.255.255.0 {
 range 192.168.0.10 192.168.0.20;
 default-lease-time 604800;
 max-lease-time 604800;
 option subnet-mask 255.255.255.0;
 option domain-name "devlan.itso.ibm.com";
 option domain-name-servers 192.168.0.1;
}

There are many parameters available for configuring the DHCP server. In Table 8, we review
the parameters we used in our environment. For a complete list and description of all the
parameters available, refer to the dhcpd.conf man page (available on your Linux system by
typing: man dhcpd.conf from the shell).

Table 8 /etc/dhcpd.conf parameters

Note: There may be directories before /suse in your environment, but the filename will be
dhcp.rpm.

Parameter Description

ddns-update-style The DHCP server has the ability to dynamically
update the Domain Name Server (DNS). We
have not enabled this function.

Instead, we use another mechanism for updating
the DNS. For more details, see “Dynamic DNS
updates” on page 39.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 35

Once we have made our modifications to the /etc/dhcpd.conf file, there are a few more steps
we need to follow before starting the DHCP server.

Edit the SuSE configuration file /etc/rc.config (remembering to make a backup of it first). Find
the line in the file that says:

START_DHCPD="no"

Change it to read:

START_DHCPD="yes"

If you do not see a line with “START_DHCPD=”, add one. The DHCP server will now start
automatically when Linux is booted.

Edit the DHCP server configuration file /etc/rc.config.d/dhcpd.rc.config (again, remembering
to make a backup before editing the file).

authoritative When a client requests an IP address, the server
must determine if the address being requested is
valid for that subnet. If the server decides that the
request is invalid, a DHCPNAK message is sent
to the client.

In order to make such decisions, the server must
have a complete, definitive picture of the network.
If that is the case, it is safe to use the
authoritative parameter.

subnet The subnet parameter describes a particular
subnet within your network. In our example, we
have defined two subnets, one for each Guest
LAN that we have running.

range All IP addresses within the range parameter are
available for lease to DHCP clients.

default-lease-time The length of time in seconds that a lease will be
granted to a client if the client does not request a
specific lease time. The “TSTLAN” has a lease
time of four weeks. The lease time of the
“DEVLAN” is one week.

max-lease-time The maximum amount of time in seconds that a
lease will be granted.

option subnet-mask The subnet mask that the client will use with its
leased IP address.

option domain-name The domain name that the client will use.

option domain-name-servers The IP address of one or more Domain Name
Servers (DNS) that the client can use for DNS
resolution.

Tip: Whenever you make a change to /etc/rc.config, you must run the SuSE configuration
script SuSEconfig in order to apply the changes to the systems’s configuration files.

Parameter Description
36 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

We changed the line which read:

DHCPD_INTERFACE="eth0"

to read:

DHCPD_INTERFACE="eth1 eth2"

as our DHCP server listens on these two interfaces, each one connected to a different z/VM
Guest LAN (see Figure 10 on page 29).

Finally, before starting the server we need to create an empty DHCP lease database file. This
file will store all the IP address lease information. The syntax to create an empty lease file is:

touch /var/lib/dhcp/dhcpd.leases

We are now ready to start our DHCP server. We can either reboot the system and let the
server start automatically, or we can start the server manually with the command:

rcdhcpd start

If your configuration was successful, output similar to that shown in Example 19 should
appear in the /var/log/messages file.

Example 19 DHCP server startup messages

Nov 27 20:19:37 lnx20 dhcpd: Internet Software Consortium DHCP Server V3.0rc12
Nov 27 20:19:37 lnx20 dhcpd: Copyright 1995-2001 Internet Software Consortium.
Nov 27 20:19:37 lnx20 dhcpd: All rights reserved.
Nov 27 20:19:37 lnx20 dhcpd: For info, please visit http://www.isc.org/products/DHCP
Nov 27 20:19:37 lnx20 dhcpd: Wrote 0 deleted host decls to leases file.
Nov 27 20:19:37 lnx20 dhcpd: Wrote 0 new dynamic host decls to leases file.
Nov 27 20:19:37 lnx20 dhcpd: Wrote 0 leases to leases file.
Nov 27 20:19:37 lnx20 dhcpd: Listening on LPF/eth2/00:04:ac:00:00:00/10.0.3.0/24
Nov 27 20:19:37 lnx20 dhcpd: Sending on LPF/eth2/00:04:ac:00:00:00/10.0.3.0/24
Nov 27 20:19:37 lnx20 dhcpd: Listening on LPF/eth1/00:04:ac:00:00:01/192.168.0.0/24
Nov 27 20:19:37 lnx20 dhcpd: Sending on LPF/eth1/00:04:ac:00:00:01/192.168.0.0/24
Nov 8 11:02:13 lnx20 dhcpd: Sending on Socket/fallback/fallback-net

DHCP client configuration
The DHCP client, dhcpcd, was already installed on our system. If this client is not installed on
your SuSE system, you can find the RPM package that contains this code in the n1 directory
of the SLES 7 distribution; for example:

/suse/n1/dhcpcd.rpm

If you need to install the dhcpcd.rpm file, this can be done from the root user ID by using the
following command:

rpm -ivh /suse/n1/dhcpcd.rpm

Before we can use the DHCP client to automatically lease an IP address at boot time, we
need to make some modifications to the system.

Note: There may be directories before /suse in your environment, but the filename will be
dhcpcd.rpm.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 37

Edit the SuSE configuration file /etc/rc.config (remembering to make a backup of it first).
Change the line that reads:

IFCONFIG_0=...

to:

IFCONFIG_0="dhcpclient"

Edit the DHCP client configuration file /etc/rc.config.d/dhcpcd.rc.config (again, remembering
to make a backup before editing the file), adding the lines shown in Example 20.

Example 20 Additions to /etc/rc.config.d/dhcpcd.rc.config

DHCLIENT_BROADCAST="yes"
DHCLIENT_DDNS_HOSTNAME_UPDATE="yes"
DHCLIENT_IDENTIFIER="yes"

Finally, edit the DHCP client script /etc/init.d/dhclient (make a backup before editing the file).

In the default version of this script, dhcpcd is started without the -B operand needed to request
broadcast responses from the DHCP server. In Example 21, we show modifications to the
script to add the broadcast option, as well as hostname (using the -h operand) and client
identifier (using the -I operand) options.

Example 21 /etc/init.d/dhclient

test "$DHCLIENT_DEBUG" = "yes" && \
DHCLIENT_ARGS="$DHCLIENT_ARGS -d"

Add the following line after the line shown above (which should have already existed)
test "$DHCLIENT_BROADCAST" = "yes" && \

DHCLIENT_ARGS="$DHCLIENT_ARGS -B"
test "$DHCLIENT_DDNS_HOSTNAME_UPDATE" = "yes" && \

DHCLIENT_ARGS="$DHCLIENT_ARGS -h $HOSTNAME"
test "$DHCLIENT_IDENTIFIER" = "yes" && \

DHCLIENT_ARGS="$DHCLIENT_ARGS -I $HOSTNAME"

Now that we have made these changes, we can either reboot the Linux guest and
automatically lease an IP address as part of the boot process, or we could manually test our
DHCP client by typing:

dhcpcd -B eth0 -h lnx17 -I lnx17

We chose to reboot our Linux DHCP client machine. In Example 22, we see the output from
the DHCP server’s /var/log/messages file.

Example 22 Output of /var/log/messages for a successful IP address lease

Nov 27 20:27:09 lnx20 dhcpd: DHCPDISCOVER from 00:04:ac:00:00:02 (lnx17) via eth2
Nov 27 20:27:09 lnx20 dhcpd: DHCPOFFER on 10.0.3.100 to 00:04:ac:00:00:02 (lnx17) via eth2
Nov 27 20:27:09 lnx20 kernel: qeth: QETH_IP_VERSION is 0
Nov 27 20:27:09 lnx20 kernel: qeth: skb->protocol=x0=0
Nov 27 20:27:09 lnx20 kernel: qeth: skb:ff ff ff ff ff ff 00 04 ac 00 00 00 08 00 45 10
Nov 27 20:27:09 lnx20 kernel: qeth: skb:01 48 00 00 00 00 10 11 9c 82 0a 00 03 14 ff ff
Nov 27 20:27:09 lnx20 dhcpd: DHCPREQUEST for 10.0.3.100 (10.0.3.20) from 00:04:ac:00:00:02
(lnx17) via eth2

Tip: Whenever you make a change to /etc/rc.config, you must run the SuSE configuration
script, SuSEconfig, in order to apply the changes to the systems’s configuration files.
38 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Nov 27 20:27:09 lnx20 dhcpd: DHCPACK on 10.0.3.100 to 00:04:ac:00:00:02 (lnx17) via eth2
Nov 27 20:27:09 lnx20 kernel: qeth: QETH_IP_VERSION is 0
Nov 27 20:27:09 lnx20 kernel: qeth: skb->protocol=x0=0
Nov 27 20:27:09 lnx20 kernel: qeth: skb:ff ff ff ff ff ff 00 04 ac 00 00 00 08 00 45 10
Nov 27 20:27:09 lnx20 kernel: qeth: skb:01 48 00 00 00 00 10 11 9c 82 0a 00 03 14 ff ff

Dynamic DNS updates
In a DHCP environment, the Linux client will lease its IP address from a DHCP server. We
can then use that IP address to connect to the client machine.

However, we still cannot access the machine using its hostname. As most of the Linux
machines running in the z/VM Guest LAN will probably be servers of one kind or another, it
would be useful if we could address those machines by hostname and not just by IP address.

To do this, we need a mechanism to dynamically update the LAN’s Domain Name Server
(DNS) to provide IP address and hostname information for our guest machine.

Allowing updates to the DNS
Before a machine can update a DNS server’s records it must be granted the authority to do
so. An extract from our /etc/named.conf DNS configuration file is shown in Example 23. We
have added an allow-update parameter for each of the two zones listed.

Example 23 /etc/named.conf

zone "tstlan.itso.ibm.com" {
 type master;
 file "pz/tstlan.itso.ibm.com";
allow-update { 10.0.3.0/24; };

};

zone "3.0.10.in-addr.arpa" {
 type master;
 file "pz/10.0.3";
allow-update { 10.0.3.0/24; };
};

Note: The Internet Software Consortium’s (ISC) DHCP server has a Dynamic DNS update
feature. This feature has two update modes (in version 3.0rc12) called ad-hoc and interim.
The modes are controlled by the parameter ddns-update-style in the /etc/dhcpd.conf file.

The ad-hoc mode has been deprecated in later releases of the DHCP software and the
ISC documentation says that it does not work. The interim mode differs slightly from the
draft standards that are currently being reviewed by the Internet Engineering Task Force
(IETF).

During testing, we used the interim mode. Given that the Dynamic DNS updating protocols
are still in a state of flux, we also wrote and tested our own alternative method of
dynamically updating the DNS, which does not have to rely on the DHCP server.

We present both of these methods in the following sections. Use one or the other for your
environment—do not implement both methods.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 39

Dynamic DNS using the DHCP server
In order to use the DHCP server’s dynamic DNS update facility, we must add two additional
global parameters to the /etc/dhcpd.conf file. An example is shown in Example 24.

Example 24 /etc/dhcpd.conf file

ddns-update-style interim;
allow client-updates;

Example 25 shows the output of the DHCP server’s syslog. From the example, we can see
that as the client leases an IP address, the DHCP server updates the DNS with details about
that client machine.

Example 25 /var/log/messages output showing dynamic DNS update

Nov 27 20:45:23 lnx20 dhcpd: DHCPDISCOVER from 00:04:ac:00:00:01 (lnx23) via eth2
Nov 27 20:45:23 lnx20 dhcpd: DHCPOFFER on 10.0.3.99 to 00:04:ac:00:00:01 (lnx23) via eth2
Nov 27 20:45:23 lnx20 kernel: qeth: QETH_IP_VERSION is 0
Nov 27 20:45:23 lnx20 kernel: qeth: skb->protocol=x0=0
Nov 27 20:45:23 lnx20 kernel: qeth: skb:ff ff ff ff ff ff 00 04 ac 00 00 00 08 00 45 10
Nov 27 20:45:23 lnx20 kernel: qeth: skb:01 48 00 00 00 00 10 11 9c 82 0a 00 03 14 ff ff
Nov 27 20:45:23 lnx20 dhcpd: if IN A lnx23.tstlan.itso.ibm.com domain doesn't exist add
1209600 IN A lnx23.tstlan.itso.ibm.com 10.0.
Nov 27 20:45:23 lnx20 dhcpd: delete IN PTR 99.3.0.10.in-addr.arpa. add 1209600 IN PTR
99.3.0.10.in-addr.arpa. lnx23.tstlan.itso.ibm.
Nov 27 20:45:23 lnx20 dhcpd: DHCPREQUEST for 10.0.3.99 (10.0.3.20) from 00:04:ac:00:00:01
(lnx23) via eth2
Nov 27 20:45:23 lnx20 dhcpd: DHCPACK on 10.0.3.99 to 00:04:ac:00:00:01 (lnx23) via eth2
Nov 27 20:45:23 lnx20 kernel: qeth: QETH_IP_VERSION is 0
Nov 27 20:45:23 lnx20 kernel: qeth: skb->protocol=x0=0
Nov 27 20:45:23 lnx20 kernel: qeth: skb:ff ff ff ff ff ff 00 04 ac 00 00 00 08 00 45 10
Nov 27 20:45:23 lnx20 kernel: qeth: skb:01 48 00 00 00 00 10 11 9c 82 0a 00 03 14 ff ff

Dynamic DNS - alternative method
This method does not use the DHCP server to update the DNS, but instead uses an
additional script in the Linux startup process so that a machine can dynamically update the
DNS once it has leased an IP address. We created a script called /etc/init.d/dhcp_nsupdate.
A listing of the script is shown in Example 26. Make certain that you set this script to be
executable by the file owner (root).

Example 26 /etc/init.d/dhcp_nsupdate script

#!/bin/sh
#
/sbin/init.d/dhcp_nsupdate
Description: Dynamic update to DNS server after lease of IP address
Determine the base and follow a runlevel link name.

Note: We can secure the DNS update process by implementing the Secret Key
Transaction Authentication for DNS (TSIG) protocol. See RFC 2845, which is available
from:

http://www.ietf.org/rfc.html

However, for simplicity and ease of understanding, we have chosen not to implement TSIG
in our examples. Also, in a trusted z/VM environment it may not be necessary to add this
additional infrastructure.
40 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www.ietf.org/rfc.html

base=${0##*/}
link=${base#*[SK][0-9][0-9]}

IPADDRESS=`ifconfig | grep "inet addr:" | grep -v "127.0.0.1" | \
 awk -F: {'print $2'} | cut -d\ -f 1`

DOMAINNAME=`/bin/domainname`

echo "update add $HOSTNAME.$DOMAINNAME 20000 A $IPADDRESS" > /var/named/dhcp_update_command
echo " " >> /var/named/dhcp_update_command

case "$1" in
 "start")
 echo "Our IP address is:" $IPADDRESS
 echo "Our HOSTNAME is:" $HOSTNAME
 echo "Our DOMAINNAME is:" $DOMAINNAME
 echo "Adding DNS entry for this server"
 nsupdate /var/named/dhcp_update_command
 rcinetd restart
 ;;
 "stop")
 echo "Removing DNS entry for this server"
 rm /var/named/dhcp_update_command
 echo "update delete $HOSTNAME.$DOMAINNAME A" > /var/named/dhcp_update_command
 echo " " >> /var/named/dhcp_update_command
 nsupdate /var/named/dhcp_update_command
 ;;
 *)
 echo "Usage: $0 {start|stop}"
exit 1
;;
esac

From the listing, we can see that the script determines the IP address, hostname, and domain
name of the Linux guest, and then runs the nsupdate command to update the DNS server.
On machine startup, the script will add a DNS record; on shutdown, it will remove the DNS
record.

In order to run this script, either automatically at Linux startup and shutdown or manually from
the shell, we need to create some symbolic links in the filesystem. An example of the
commands used to set up these links is shown in Example 27.

Example 27 Setting up the symbolic links

cd /sbin
ln -s /etc/init.d/dhcp_nsupdate rcdhcp_nsupdate

cd /etc/rc.d/rc3.d/
ln -s /etc/init.d/dhcp_nsupdate S24dhcp_nsupdate
ln -s /etc/init.d/dhcp_nsupdate K09dhcp_nsupdate

Now that we have made these additional changes, this alternative method of DNS updating is
ready to be tested. Either shut down your Linux guest and reboot it, or use the
rcdhcp_nsupdate start command from the Linux shell.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 41

Fixed IP address allocation
There may be certain Linux machines in your Guest LAN that require a fixed IP address due
to specific application or operational requirements. We could define these Linux guests with
static IP addresses outside of DHCP control. However, that means that we would still need to
configure IP addressing information for each of these machines, which is something we are
trying to avoid.

An easier approach would be to let the DHCP server handle the IP address allocation. In that
scenario, the DHCP client presents the server with a unique identifier as part of its request for
an IP address. The server uses that identifier to determine if the client is to receive a fixed IP
address instead of an address from a pool. The unique identifier can be a machine’s MAC
address or a user-specified dhcp-client-identifier.

In “DHCP client configuration” on page 37, we configured the DHCP client software to send a
unique identifier to the server. In our example, we used:

dhcpcd -B eth0 -h lnx17 -I lnx17

The -I parameter is the dhcp-client-identifier.

On the server side, we define which systems are to have fixed IP addresses by updating the
/etc/dhcpd.conf file.

Tip: A runlevel defines which scripts are to be run when Linux is booted and shut down.
The default runlevel for the SLES 7 Linux system is runlevel 3. We have defined symbolic
links so that the dhcp_nsupdate script will run whenever Linux is booted or shut down in
runlevel 3.

A naming convention is applied to the symbolic links. The first character is either an S or a
K, for startup or shutdown (kill), respectively. A sequence number follows the first
character. This number dictates in which order startup or shutdown scripts are to run. This
is useful for managing dependencies between processes running in the Linux system. For
example, we want S24dhcp_nsupdate to run after S05network, which is the main network
startup script.

You can choose your own numbering to fit in with your standards. The dependency for
adding entries to the DNS server is that we must have first started our networking devices
and leased an IP address. The dependency for removing entries from the DNS is to run the
dhcp_nsupdate script before dropping network connectivity.

Restriction: In a z/VM Guest LAN environment, we cannot guarantee that a guest
machine will have the same MAC address every time it logs on. Therefore, we cannot use
MAC addresses as a unique identifier for fixed IP address allocation purposes.

Note: We chose to use the linux hostname as the unique dhcp-client-identifier. As we had
complete control over the system, that was a safe thing to do.

However, if you do not have complete control over your environment, you should develop a
strategy so that the dhcp-client-identifier is, in fact, unique. Otherwise, it is possible that a
server may be given an IP address meant for another machine on your system.
42 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

In Example 28, two machines are configured to have fixed IP addresses.

Example 28 Extract of /etc/dhcpd.conf showing fixed IP address allocations

host lnx17.tstlan.itso.ibm.com {
 option dhcp-client-identifier 00:6c:6e:78:31:37:00;
 fixed-address 10.0.3.99;
}

host lnx23.tstlan.itso.ibm.com {
 option dhcp-client-identifier 00:6c:6e:78:32:33:00;
 fixed-address 10.0.3.98;
}

Linux installation using DHCP
With a DHCP server in a z/VM Guest LAN, we now theoretically have the option to
dynamically lease an IP address when installing a Linux instance, instead of the previous
requirement of having to hardcode a specific IP address. However, as no Linux distributions at
time of writing (November 2002) were at the requisite kernel and qeth device driver levels, this
capability is not yet available. We anticipate that once the Linux for zSeries and S/390
distributions are at the correct software levels, Linux installation in a Guest LAN will be able to
take advantage of DHCP.

Important: You may be wondering why a dhcp-client-identifier of lnx17 on the client side is
defined as 00:6c:6e:78:31:37:00 in Example 28. In testing, we tried to use the string
“lnx17” as the dhcp-client-identifier, but that didn’t work.

After reading the source code and packet-tracing the conversation, we determined that the
DHCP server was actually expecting to see a 6-byte MAC address (in the usual
hexadecimal format) with a 1-byte interface type in front of the address.

Armed with that knowledge. we converted our “lnx17” string to ASCII hexadecimal. The
result was 6c:6e:78:31:37. As we only had 5 bytes, we added 00 to the end of the identifier.
We also added 00 to the front of the identifier for the interface type. How did we know to
use 00’for the interface type? We got that information from the packet trace.

We tested this method up to an 8-byte guest name (the maximum allowed by CP); for
example, “linux678”. In that situation, our /etc/dhcpd.conf definition looked as follows:

host linux678.tstlan.itso.ibm.com {
 option dhcp-client-identifier 00:6c:69:6e:75:78:36:37:38:00;
 fixed-address 10.0.3.77;
}

In ASCII, hexadecimal “linux678” is 6c:69:6e:75:78:36:37:38 and again we added a 00 to
both the beginning and the end of the identifier.
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 43

Summary
This Redpaper has introduced the concepts of IP broadcast and DHCP, and has outlined a
method of implementing a DHCP environment in a z/VM Guest LAN. We believe that the
introduction of broadcast support, and through it DHCP to a z/VM Guest LAN, is very
beneficial to systems programmers.

Instead of hardcoding network information in each guest, we can now obtain the information
dynamically from a DHCP server. This reduces the time and effort required to install, clone, or
administer a Linux guest machine. This should prove particularly useful in large-scale Linux
deployments.
44 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Appendix

Upgrading your Linux kernel

As previously stated, the examples in this Redpaper have been based on the 31-bit SuSE
Linux Enterprise Server (SLES) 7 distribution. While we did not have the resources to test
other distributions, any system that runs a kernel at 2.4.19 or higher with the appropriate
QETH device driver should be able to exploit broadcast support and thus enjoy the benefits of
DHCP.

Your build system must have the following levels of software installed (as a minimum):

� gcc version 2.95.3 or later supporting Linux for zSeries and S/390

� binutils version 2.11.90.0.27 or later supporting Linux for zSeries and S/390

� glibc 2.2.4 or later supporting Linux for zSeries and S/390

� sed

� bash

� make version 3.77 or later

Follow these steps to upgrade from the 2.4.7 kernel to the 2.4.19 kernel:

1. Obtain the “vanilla” 2.4.19 Linux kernel.

2. Obtain the Linux for zSeries and S/390-specific patches and OCO modules.

3. Patch the kernel with the zSeries and S/390-specific patches.

4. Configure and build the kernel.

5. Copy OCO modules.

6. Copy the new kernel files, run zipl and re-IPL.

7. Build s390-tools.

Attention: Upgrading the Linux kernel is a straightforward process if you follow the
instructions accurately and are confident that you know what you are doing. We
recommend that, until you are comfortable with upgrading kernels, you only practice on
machines which are expendable and can be rebuilt if you make a mistake.

If you have a support contract for Linux on zSeries or System/390, upgrading your Linux
kernel to 2.4.19 may affect your support contract. We anticipate that standard distributions
based on the 2.4.19 (or later) kernel will become available in late 2002.

For additional information, see Appendix D, “Building the kernel” in the publication Linux for
zSeries and S/390 Device Drivers and Installation Commands, July 31, 2002, Linux Kernel
2.4 LNUX-1303-01, available at:

http://oss.software.ibm.com/linux390/docu/lnuxdd01.pdf
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 45

http://oss.software.ibm.com/linux390/docu/lnuxdd01.pdf

Obtain the “vanilla” 2.4.19 Linux kernel
We downloaded the “vanilla” (standard) 2.4.19 Linux kernel from the Linux kernel ftp server:

ftp://ftp.kernel.org/pub/linux/kernel/v2.4

The file was called:

linux-2.4.19.tar.gz

Obtain the Linux for zSeries and S/390-specific patches and OCO modules
We downloaded the zSeries and S/390-specific patches from the IBM developerworks Web
site:

http://oss.software.ibm.com/linux390/current2_4_19-may2002.shtml

The files downloaded to the /usr/src/kernel directory were:

� linux-2.4.19-s390-may2002.tar.gz
� linux-2.4.19-s390-may2002-1.tar.gz
� linux-2.4.19-s390-may2002-2.tar.gz
� linux-2.4.19-timer-1-may2002.tar.gz
� linux-2.4.19-s390-kerntypes-may2002.tar.gz

We downloaded the s390-tools package:

s390-tools-1.1.3-may2002.tar.gz

to the /usr/src/s390-tools directory.

We also downloaded the version of the OSA-Express QETH driver Object Code Only (OCO)
module that provides support for IP broadcast from:

http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml

We downloaded the qeth-susekernel-2.4.19-s390-1.tar.gz file to the /usr/src/OCOmodule
directory.
.

Patch the kernel
The Linux kernel source resides in /usr/src/linux directory. You may already have a copy of an
earlier Linux kernel at this location. If you want to keep it, we recommend you rename this
directory.

Unwind the vanilla Linux kernel and patch it with the zSeries-specific patches as shown in
Example 29.

Example 29 Patching the kernel

cd /usr/src
tar -zxvf linux-2.4.19.tar.gz
ln -s linux-2.4.19 linux
cd kernel
tar -zxf linux-2.4.19-s390-may2002.tar.gz
tar -zxf linux-2.4.19-s390-may2002-1.tar.gz

Note: In earlier levels of the Linux for zSeries and S/390 kernel, we had to download both
a QDIO and QETH OCO module. Starting with the 2.4.19 kernel level, the QDIO module is
now provided in source-code as part of the kernel patch.
46 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www10.software.ibm.com/developerworks/opensource/linux390/special_oco_su_2.4.shtml
ftp://ftp.kernel.org/pub/linux/kernel/v2.4
http://oss.software.ibm.com/linux390/current2_4_17-may2002.shtml
ftp://ftp.kernel.org/pub/linux/kernel/v2.4
http://oss.software.ibm.com/linux390/current2_4_17-may2002.shtml

tar -zxf linux-2.4.19-s390-may2002-2.tar.gz
tar -zxf linux-2.4.19-timer-1-may2002.tar.gz
tar -zxf linux-2.4.19-s390-kerntypes-may2002.tar.gz
cd ../linux
patch -p1 < ../kernel/linux-2.4.19-s390-may2002.diff
patch -p1 < ../kernel/linux-2.4.19-s390-1-may2002.diff
patch -p1 < ../kernel/linux-2.4.19-s390-2-may2002.diff
patch -p1 < ../kernel/linux-2.4.19-timer-1-may2002.tar.gz
patch -p1 < ../kernel/linux-2.4.19-s390-kerntypes-may2002.diff

Then clean up the distribution by running the command make distclean from the
/usr/src/linux directory. This will reset options and remove any old object files.

Configure and build the kernel
From the /usr/src/linux directory, type: make menuconfig to invoke the kernel configuration
utility. You will be presented with a screen similar to that shown in Example 30. The areas you
need to review in relation to this Redpaper are denoted by the bold text. Note, however, that
there may be additional options that you want to set for your environment.

Example 30 make menuconfig - main screen

Code maturity level options --->
Loadable module support --->
Processor type and features --->
General setup --->
SCSI support --->
Block device drivers --->
Multi-device support (RAID and LVM) --->
Character device drivers --->
Network device drivers --->
Miscellaneous --->
Networking options --->
File systems --->
Kernel hacking --->

Load an Alternate Configuration File
Save Configuration to an Alternate File

The Processor type and features screen has IEEE FPU emulation, which can be turned off for
G5 or later machines which have IEEE FPU instructions in the hardware, as shown in
Example 31.

Example 31 Processor type and features

[*] Symmetric multi-processing support
[] IEEE FPU emulation

The General setup screen has the No HZ timer ticks in idle setting which should be turned on,
as shown in Example 32. This is especially important when many Linux images are running
under z/VM.

Example 32 General setup

[*] Fast IRQ handling
[*] Process warning machine checks
[*] Use chscs for Common I/O
<M> QDIO support
[] Performance statistics in /proc
[*] Builtin IPL record support
(vm_reader) IPL method generated into head.S
[*] Networking support
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 47

[*] System V IPC
[] BSD Process Accounting
[*] Sysctl support
<*> Kernel support for ELF binaries
< > Kernel support for MISC binaries
[] Show crashed user process info
[*] Pseudo page fault support
[] VM shared kernel support
[*] No HZ timer ticks in idle
[] Idle HZ timer on by default

In the networking options screen shown in Example 33, we need to make sure that the Packet
socket option and the Socket Filtering option are enabled, as these are required for the DHCP
server.

Example 33 Networking options

<*> Packet socket
[] Packet socket: mmapped IO
< > Netlink device emulation
[*] Network packet filtering (replaces ipchains)
[] Network packet filtering debugging
[*] Socket Filtering
<*> Unix domain sockets
[*] TCP/IP networking
[*] IP: multicasting
[] IP: advanced router
[] IP: kernel level autoconfiguration
< > IP: tunneling
< > IP: GRE tunnels over IP
[] IP: multicast routing
[] IP: ARP daemon support (EXPERIMENTAL)
[] IP: TCP Explicit Congestion Notification support
[] IP: TCP syncookie support (disabled per default)
IP: Netfilter Configuration --->
<M> The IPv6 protocol (EXPERIMENTAL)
IPv6: Netfilter Configuration --->
[*] Prepare net_device struct for shared IPv6 cards
< > Kernel httpd acceleration (EXPERIMENTAL)
[] Asynchronous Transfer Mode (ATM) (EXPERIMENTAL)
<M> 802.1Q VLAN Support (EXPERIMENTAL)

In the File systems menu shown in Example 34, be sure to turn off “/dev file system support”
unless you specifically want to use it and you have properly configured your system to use
DEVFS.

Make sure that you have “Second extended fs support” enabled; this is for the ext2 filesystem.
You may be interested in turning on support for the ext3 filesystem, selected via the option
“Ext3 journalling file system support”.

Example 34 File systems menu

[] Quota support
< > Kernel automounter support
< > Kernel automounter version 4 support (also supports v3)
< > Reiserfs support
< > ADFS file system support
< > Amiga FFS file system support (EXPERIMENTAL)
< > Apple Macintosh file system support (EXPERIMENTAL)
48 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

< > BFS file system support (EXPERIMENTAL)
< > Ext3 journalling file system support
< > DOS FAT fs support
< > EFS file system support (read only) (EXPERIMENTAL)
< > Journalling Flash File System (JFFS) support
< > Journalling Flash File System v2 (JFFS2) support
< > Compressed ROM file system support
[] Virtual memory file system support (former shm fs)
< > ISO 9660 CDROM file system support
< > Minix fs support
< > FreeVxFS file system support (VERITAS VxFS(TM) compatible)
< > NTFS file system support (read only)
< > OS/2 HPFS file system support
[*] /proc file system support
[] /dev file system support (EXPERIMENTAL)
[] /dev/pts file system for Unix98 PTYs
< > QNX4 file system support (read only)
< > ROM file system support
<*> Second extended fs support
< > System V/Xenix/V7/Coherent file system support
< > UDF file system support (read only)
< > UFS file system support (read only)
Network File Systems --->
Partition Types --->

Once you have made these selections, then exit from the menuconfig utility, remembering to
save the configuration as you exit.

You are now ready to build the kernel using the commands illustrated in Example 35.

Example 35 Commands to build the kernel

make dep
...
make image
...
make modules
...
make modules_install
...

Copy OCO modules
Copy the downloaded QETH OCO module to the correct directory, as shown in Example 36.

Example 36 Copy QETH module

cd /usr/src/OCOmodule
tar -zxf qeth-2.4.19-s390-1-may2002.tar.gz
cp qeth-2.4.19-s390-1-may2002.o /lib/modules/2.4.19/kernel/net/qeth.o
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 49

Copy the new kernel files, run zipl and re-IPL
Copy the new kernel, system map, and kernel configuration files to the correct directories, as
shown in Example 37.

Example 37 Copy the kernel files

cd /boot/kernel
cp /usr/src/linux/arch/s390/boot/image image-2.4.19
cp /usr/src/linux/System.map System.map-2.4.19
cp /usr/src/linux/.config .config-2.4.19

Before we can re-IPL our Linux guest, we must prepare the boot disk to load our newly built
2.4.19 kernel.

To do this, we run the zSeries Initial Program Loader (zIPL) utility. An example of running this
utility is shown in Example 38.

Example 38 Running zipl

zipl --target=/boot/zipl --image=/boot/kernel/image-2.4.19 --parmfile=/boot/parmfile

building bootmap : /boot/zipl/bootmap
adding Kernel Image : /boot/kernel/image-2.4.19 located at 0x00010000
adding Parmline : /boot/parmfile located at 0x00001000
Bootloader for ECKD type devices with classic layout installed.
Syncing disks....
...done

We can now re-IPL our Linux guest. Once the system has started, run the uname -a
command to determine if the system is now at the 2.4.19 level of Linux kernel, as seen in
Example 39.

Example 39 Running uname

uname -a

Linux lin005 2.4.19 #1 SMP Wed Nov 13 22:10:53 EST 2002 s390 unknown

Build s390-tools
As the name implies, the “s390-tools” package contains a set of zSeries and S/390-specific
utilities. The utilities include:

� dasdfmt

Used to low-level format ECKD DASD with either the classic Linux disk layout or the new
z/OS-compatible disk layout.

� fdasd

Used to create or modify partitions on ECKD DASD formatted with the z/OS-compatible
disk layout.

� dasdview

Used to display DASD and VTOC information or to dump the contents of a DASD to the
console.

� zipl

Used to make either a DASD or a tape bootable for system IPL or system dump.
50 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

� zgetdump

Used to retrieve system dumps from either tape or DASD.

� qetharp

A tool to read and flush the ARP cache on the OSA Express Direct network cards.

� tape390_display

Used to display messages on the display unit of a zSeries tape device.

� osasnmpd

A ucd-snmp subagent implementing MIBs provided by OSA-Express Fast Ethernet,
Gigabit Ethernet, High Speed Token Ring and ATM Ethernet LAN Emulation in QDIO
mode.

We need to build a new version of this package that will be fully compatible with the 2.4.19
kernel.

To build s390-tools, perform the following steps illustrated in Example 40 (note that we made
a backup of the current zipl program).

Example 40 Build s390-tools package

cp /sbin/zipl /sbin/zipl.orig
cd /usr/src/s390-tools
tar -zxf s390-tools-1.1.3-may2002.tar.gz
ln -s s390-tools-1.1.3 s390-tools
tar -zxf parsecfg-3.6.7.tar.gz
ln -s parsecfg-3.6.7 parsecfg
cd s390-tools
cp ../parsecfg/src/parsecfg.h zipl/include
cp ../parsecfg/src/parsecfg.c zipl/src
make
make install
make clean

We now have a new “s390-tools” suite of utilities, compatible with the Linux 2.4.19 kernel.

Note: The zipl utility can be run purely from the command line or with a zipl configuration
file, typically /etc/zipl.conf. In order for zipl to read the configuration file, we need to compile
the zipl source code with an additional parser package available from the Internet. The
package is called parsecfg-3.6.7 and it can be downloaded from:

http://www.netsw.org/system/libs/config
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 51

http://www.netsw.org/system/libs/config

52 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Related publications

IBM Redbooks
� Building Linux Systems Under IBM VM, REDP0120

http://www.ibm.com/redbooks/abstracts/redp0120.html

� Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299

http://www.ibm.com/redbooks/abstracts/sg246299.html

� Linux on IBM ^ zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux on IBM ^ zSeries and S/390: Large Scale Linux Deployment, SG24-6824

http://www.ibm.com/redbooks/abstracts/sg246824.html

� zSeries HiperSockets, SG24-6816

http://www.ibm.com/redbooks/abstracts/sg246816.html

Other resources
� z/VM CP Planning and Administration, Version 4 Release 3.0, SC24-6043

� z/VM CP Command and Utility Reference, Version 4 Release 3.0, SC24-6008

� The DHCP Handbook: Understanding, Deploying, and Managing Automated
Configuration Services, by Ralph Droms, Ph.D. and Ted Lemon. Macmillan Technical
Publishing, 1999. ISBN 1578701376.

Referenced Web sites
� Linux for zSeries Device Driver code and documentation

http://oss.software.ibm.com/developerworks/opensource/linux390/current2_4_17-may2002.shtml
http://www10.software.ibm.com/developerworks/opensource/linux390/docu/lnuxdd01.pdf

� Internet Engineering Task Force standards

http://www.ietf.org/html.charters/dhc-charter.html
http://www.ietf.org/rfc.html

� DHCP server

http://www.isc.org

� DHCP client

http://www.phystech.com/download/
Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN 53

http://www.ibm.com/redbooks/abstracts/redp0120.html
http://www.ibm.com/redbooks/abstracts/sg246299.html
http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg246824.html
http://www.ibm.com/redbooks/abstracts/sg246816.html

About the author
Simon Williams is a Senior I/T Specialist with IBM Australia. He likes to specialize in zSeries
“new technologies” such as Linux and TCP/IP networking. However, he can still occasionally
be spotted writing a bit of assembler or JCL. His technical publications include ITSO
Redbooks on Domino/390, Linux for zSeries ISP/ASP solutions, and a Redpaper on how to
install Linux guests under VM. Before joining IBM, he was an MVS Systems Programmer and
has been working with mainframe systems since 1988.

Acknowledgements
The author would like to thank the following people for their contributions to this Redpaper:

Roy Costa, Greg Geiselhart, Mike MacIsaac, and Dennis Musselwhite.
54 Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. 55

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

IBM eServer™
DFS™
ECKD™
IBM®
Multiprise®
MVS™

OS/2®
Perform™
Redbooks(logo)™
Redbooks™
S/390®
SP™

System/390®
z/OS™
z/VM™
zSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

56 Linux on IBM ̂zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Linux on IBM zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN
	Preface
	Objectives
	z/VM Guest LAN
	Introduction
	Guest LAN configuration
	Create a z/VM Guest LAN
	Permanent Guest LANs
	The VMLAN statement
	Non-permanent Guest LANs
	Create a virtual Network Interface Card
	NIC definition in the User Directory
	NIC definition using CP commands
	Connect the virtual NIC to the Guest LAN
	Example of building a z/VM Guest LAN
	Undoing the definitions
	Configuring Linux to connect to a Guest LAN

	IP addressing
	An introduction to DHCP
	Obtaining configuration information
	Lease renewal
	DHCP relay agent
	DHCP in a z/VM Guest LAN
	Implementing DHCP in a z/VM Guest LAN
	DHCP server configuration
	DHCP client configuration
	Dynamic DNS updates
	Fixed IP address allocation

	Linux installation using DHCP
	Summary

	Appendix
	Upgrading your Linux kernel
	Obtain the “vanilla” 2.4.19 Linux kernel
	Obtain the Linux for zSeries and S/390-specific patches and OCO modules
	Patch the kernel
	Configure and build the kernel
	Copy OCO modules
	Copy the new kernel files, run zipl and re-IPL
	Build s390-tools

	Related publications
	IBM Redbooks
	Other resources
	Referenced Web sites
	About the author
	Acknowledgements

	Notices
	Trademarks

